An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
Authors
Abstract:
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering of the network, and the community separates a graph. In recent years, public methods suffer from inefficiency because of the high complexity of time and the need for full access to graph information. In contrast, smart methods such as meta-heuristic algorithms, the use of low parameters and much less complex time complexity have been among the most popular methods in recent years. These methods have good features, but they still face problems such as dependence on finding the best point in search space, global updates, and poor quality due to the formation of large communities and others. In this paper, in order to improve the mentioned problems, a method is proposed based on combining the Firefly Algorithm (FA) and Learning Automata (LA). In the proposed model, LA is used to increase the efficiency of the FA. Choosing the best neighbours for the FA agents is done using the LA. The results from the four datasets of Karate, Dolphins, Polbooks, and Football show that the proposed model has more Normalized Mutual Information (NMI) than other models.
similar resources
Irregular cellular learning automata-based algorithm for sampling social networks
Since online social networks usually have quite huge size and limited access, smaller subgraphs of them are often produced and analysed as the representative samples of original graphs. Sampling algorithms proposed so far are categorized into three main classes: node sampling, edge sampling, and topology-based sampling. Classic node sampling algorithm, despite its simplicity, performs surprisin...
full textOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
full textA CELLULAR AUTOMATA BASED FIREFLY ALGORITHM FOR LAYOUT OPTIMIZAION OF TRUSS STRUCTURES
In this study an efficient meta-heuristic is proposed for layout optimization of truss structures by combining cellular automata (CA) and firefly algorithm (FA). In the proposed meta-heuristic, called here as cellular automata firefly algorithm (CAFA), a new equation is presented for position updating of fireflies based on the concept of CA. Two benchmark examples of truss structures are presen...
full textA Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring
All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...
full textA New Framework based on Learning Automata for User Community Detection in Social Networks
Recently, social networks provide some rich resources of heterogeneous data which their analysis can lead to discover unknown information and relations within such networks. Users in online social networks tend to form community groups based on common location, interests, occupation, etc. Hence, communities play special roles in the structure–function relationship. Therefore, detecting signific...
full textA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
full textMy Resources
Journal title
volume 10 issue 3
pages 13- 30
publication date 2019-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023